The Jacobian Conjecture fails for pseudo-planes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Jacobian Conjecture

The Jacobian Conjecture can be generalized and is established : Let S be a polynomial ring over a field of characteristic zero in finitely may variables. Let T be an unramified, finitely generated extension of S with T = k . Then T = S. Let k be an algebraically closed field, let k be an affine space of dimension n over k and let f : k −→ k be a morphism of algebraic varieties. Then f is given ...

متن کامل

Hesse and the Jacobian Conjecture

In this paper we give a survey of various recent results obtained by the authors in the study of the Jacobian Conjecture. It is shown that it suffices to investigate the conjecture for polynomial maps of the form x+H with JH nilpotent and symmetric (and one may even assume that H is homogeneous of degree 3). Furthermore it is shown that for such maps the Jacobian Conjecture is true if n ≤ 4 and...

متن کامل

On Jacobian conjecture

Any endomorphism of Cn defined by n polynomials with everywhere non-vanishing Jacobian is an automorphism. The Jacobian conjecture originated fromKeller ([5]). Let F1, . . . , Fn ∈ C[x1, . . . , xn] be a set of n polynomials in n variables with n ≥ 1 such that the Jacobian of these polynomials is a nonzero constant. The Jacobian conjecture says that the subalgebra C[F1, . . . , Fn] of C[x1, . ....

متن کامل

Pólya’s Conjecture Fails for the Fractional Laplacian

The analogue of Pólya’s conjecture is shown to fail for the fractional Laplacian (−∆) on an interval in 1-dimension, whenever 0 < α < 2. The failure is total: every eigenvalue lies below the corresponding term of the Weyl asymptotic. In 2-dimensions, the fractional Pólya conjecture fails already for the first eigenvalue, when 0 < α < 0.984. Introduction. The Weyl asymptotic for the n-th eigenva...

متن کامل

Nilpotent Symmetric Jacobian Matrices and the Jacobian Conjecture Ii

It is shown that the Jacobian Conjecture holds for all polynomial maps F : k → k of the form F = x + H , such that JH is nilpotent and symmetric, when n ≤ 4. If H is also homogeneous a similar result is proved for all n ≤ 5. Introduction Let F := (F1, . . . , Fn) : C → C be a polynomial map i.e. each Fi is a polynomial in n variables over C. Denote by JF := (i ∂xj )1≤i,j≤n, the Jacobian matrix ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2018

ISSN: 0001-8708

DOI: 10.1016/j.aim.2018.09.020